A Hopf Bifurcation in an Activator-inhibitor System Derived from a Van Der Pol Equation
نویسنده
چکیده
We are concerned with an activator-inhibitor system proposed by Ohta [8]. The purpose of this paper is to study the dynamics of interfaces in an interfacial problem which is reduced from the system in order to examine how this problem is different from an activator-inhibitor system [3, 7].
منابع مشابه
Local $ell_2$ Gain of Hopf Bifurcation Stabilization
Local L2 gain analysis of a class of stabilizing controllers for nonlinear systems with Hopf bifurcations is studied. In particular, a family of Lyapunov functions is first constructed for the corresponding critical system, and simplified sufficient conditions to compute the L2 gain are derived by solving the Hamilton-Jacobi-Bellman (HJB) inequality. Local robust analysis can then be conducted ...
متن کاملA new algorithm for solving Van der Pol equation based on piecewise spectral Adomian decomposition method
In this article, a new method is introduced to give approximate solution to Van der Pol equation. The proposed method is based on the combination of two different methods, the spectral Adomian decomposition method (SADM) and piecewise method, called the piecewise Adomian decomposition method (PSADM). The numerical results obtained from the proposed method show that this method is an...
متن کاملHopf Bifurcation Analysis for the van der Pol Equation with Discrete and Distributed Delays
We consider the van der Pol equation with discrete and distributed delays. Linear stability of this equation is investigated by analyzing the transcendental characteristic equation of its linearized equation. It is found that this equation undergoes a sequence of Hopf bifurcations by choosing the discrete time delay as a bifurcation parameter. In addition, the properties of Hopf bifurcation wer...
متن کاملDouble Hopf bifurcation in delayed van der Pol-Duffing equation
In this paper, we study dynamics in delayed van der Pol–Duffing equation, with particular attention focused on nonresonant double Hopf bifurcation. Both multiple time scales and center manifold reduction methods are applied to obtain the normal forms near a double Hopf critical point. A comparison between these two methods is given to show their equivalence. Bifurcations are classified in a two...
متن کاملPeriodic solutions for van der Pol equation with time delay
In this paper, the van der Pol equation with a time delay is considered, where the time delay is regarded as a parameter. It is found that Hopf bifurcation occurs when this delay passes through a sequence of critical value. A formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions is given by using the normal form method and center manif...
متن کامل